A hybrid evolutionary learning algorithm for TSK-type fuzzy model design
نویسندگان
چکیده
منابع مشابه
A hybrid evolutionary learning algorithm for TSK-type fuzzy model design
In this paper, a TSK-type fuzzy model (TFM) with a hybrid evolutionary learning algorithm (HELA) is proposed. The proposed HELA method combines the compact genetic algorithm (CGA) and the modified variable-length genetic algorithm (MVGA). Both the number of fuzzy rules and the adjustable parameters in the TFM are designed concurrently by the HELA method. In the proposed HELA method, individuals...
متن کاملReinforcement Hybrid Evolutionary Learning for TSK-Type Neuro-Fuzzy Controller Design
This paper proposes a recurrent TSK-type neuro-fuzzy controller (TNFC) with reinforcement hybrid evolutionary learning algorithm (R-HELA). The proposed R-HELA combines the compact genetic algorithm (CGA) and the modified variable-length genetic algorithm (MVGA) to perform the structure/parameter learning for constructing the TNFC dynamically. The evolution of a population consists of three majo...
متن کاملHybrid Learning for General Type-2 TSK Fuzzy Logic Systems
This work is focused on creating fuzzy granular classification models based on general type-2 fuzzy logic systems when consequents are represented by interval type-2 TSK linear functions. Due to the complexity of general type-2 TSK fuzzy logic systems, a hybrid learning approach is proposed, where the principle of justifiable granularity is heuristically used to define an amount of uncertainty ...
متن کاملAdaptive Group Organization Cooperative Evolutionary Algorithm for TSK-type Neural Fuzzy Networks Design
This paper proposes a novel adaptive group organization cooperative evolutionary algorithm (AGOCEA) for TSK-type neural fuzzy networks design. The proposed AGOCEA uses group-based cooperative evolutionary algorithm and selforganizing technique to automatically design neural fuzzy networks. The group-based evolutionary divided populations to several groups and each group can evolve itself. In th...
متن کاملFirst-order Interval Type-2 TSK Fuzzy Logic Systems Using a Hybrid Learning Algorithm
This article presents a new learning methodology based on a hybrid algorithm for interval type-2 TSK fuzzy logic systems (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-2 TSK FLS output is calculated and the consequent parameters are estimated by recursive least-squares (RLS) method. In the backward pass, the error propagates backward, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2006
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2005.08.008